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a b s t r a c t

Tracklet association methods learn the cross camera retrieval ability though associating underlying
cross camera positive samples, which have proven to be successful in unsupervised person re-
identification task. However, most of them use poor-efficiency association strategies which costs long
training hours but gains the low performance. To solve this, we propose an effective end-to-end
exemplar associations (EEA) framework in this work. EEA mainly adapts three strategies to improve
efficiency: (1) end-to-end exemplar-based training, (2) exemplar association and (3) dynamic
selection threshold. The first one is to accelerate the training process, while the others aim to
improve the tracklet association precision. Compared with existing tracklet associating methods, EEA
obviously reduces the training cost and achieves the higher performance. Extensive experiments and
ablation studies on seven RE-ID datasets demonstrate the superiority of the proposed EEA over most
state-of-the-art unsupervised and domain adaptation RE-ID methods.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Person Re-identification (RE-ID) is an open-set retrieval task
and has potential applications like longterm multi-camera track-
ing and forensic search. Given a pedestrian images, the per-
son Re-ID model encodes it to a representation vector and uses
the representation vector retrieving similar pedestrian images
across different cameras. Essentially, person RE-ID is a repre-
sentation learning task which learns the view-invariant visual
representation. Benefiting from the advance of deep representa-
tion learning (He, Zhang, Ren, & Sun, 2016; Krizhevsky, Sutskever,
& Hinton, 2012) and deep metric learning (Hadsell, Chopra, &
LeCun, 2006; Liu, Zhu, Lei, & Li, 2019; Schroff, Kalenichenko, &
Philbin, 2015), the performance of RE-ID has obtained significant
improvements (Bai, Bai, & Tian, 2017; Hou et al., 2019b; Li, Zhao,
Xiao, & Wang, 2014a; Shen, Li, Yi, Chen, & Wang, 2018; Shi et al.,
2016; Sun, Zheng, Deng, & Wang, 2017; Sun, Zheng, Yang, Tian, &
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Wang, 2018; Yi, Lei, Liao, & Li, 2014; Zheng, Zheng, & Yang, 2018).
These deep person RE-ID methods are data-driven supervised
algorithms, which need a large number of pair-wise labeled data
to learn the view-invariant representations. Fig. 1 shows exam-
ples of pair-wise labeled tracklets. Pair-wise labeling denotes that
annotating the some pedestrian from different cameras, which
is expensive and time-consuming. Hence, unsupervised training
and improving the scalability of deep RE-ID algorithm become the
great challenges in recent person RE-ID research.

There have been a series of unsupervised image-level methods
to address this problem, which can be roughly divided into four
categories: (1) image style transformation, (2) model domain
adaptation, (3) unsupervised clustering and (4) memory associa-
tion. Image style transformation methods (Bak, Carr, & Lalonde,
2018; Deng, Zheng, Ye, Kang, Yang, & Jiao, 2018; Wei, Zhang, Gao,
& Tian, 2018; Zhong, Zheng, Li and Yang, 2018; Zhong, Zheng,
Zheng, Li and Yang, 2018) transfer the source domain images to
the target domain by GAN (Goodfellow et al., 2014; Zhu, Park,
Isola, & Efros, 2017) network and train the target model with
transferred images. Domain adaptation methods (Li et al., 2018;
Wang, Zhu, Gong, & Li, 2018) aim to transfer the knowledge
of the source domain trained model to the target domain in
an unsupervised manner. Clustering methods (Fan, Zheng, Yan,
& Yang, 2018; Jinlin, Shengcai, Zhen, Xiaobo, Yang, & Li, 2018)
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Fig. 1. Examples of the pair-wise labeled tracklets. Pair-wise labeled tracklets refer the images belonging to the same person under different cameras. RE-ID model
learns the view-invariance representation by pull the positive pairs close and push the negative pairs away.

obtain pseudo labels of the target domain data through clus-
tering algorithms and fine tune the source domain model with
these pseudo labels. Memory association methods (Yu et al.,
2019; Zhong, Zheng, Luo, Li and Yang, 2019) store the image
feature in the memory and learn, building relations among image
memories. These relations provide rich training signals in the
unsupervised training process.

However, the precondition of above mentioned methods is
domain similarity between the source domain and the target
domain, since all of them need source domain pre-training. For
example, as shown in Deng et al. (2018), Fan et al. (2018) and
Liang, Wang, Lai, and Zhu (2018), the above mentioned methods
are easily achieving high improvements on Market1501 (Zheng
et al., 2015) and DukeMTMC-ReID (Ristani, Solera, Zou, Cucchiara,
& Tomasi, 2016a). This is because Market1501 and DukeMTMC-
ReID are similar to each other and the source domain pre-trained
model can provide a high start point for unsupervised algorithms.
While the pre-trained model hardly works on target datasets (i.e.,
MSMT17, CUHK03), these unsupervised methods are difficult to
play a useful role. This weakness limits the scalability of the
above unsupervised algorithms for the real-world unknown scene
applications.

Recent advanced methods overcome this weakness by using
tracklet association methods (i.e., TAUDL (Li, Zhu and Gong, 2018),
UTAL (Li, Zhu, & Gong, 2019), RACE (Ye, Lan, & Yuen, 2018),
BUC (Lin, Dong, Zheng, Yan, & Yang, 2019), UGA (Wu et al., 2019)).
They assume that pedestrian tracklets are automatically obtained
by existing detection (Dollar, Wojek, Schiele, & Perona, 2012;
Zhang, Benenson, & Schiele, 2017; Zhang, Wen, Bian, Lei, & Li,
2018) and tracking algorithms (Lealtaixe, Milan, Reid, Roth, &
Schindler, 2015; Ristani, Solera, Zou, Cucchiara, & Tomasi, 2016b).
Though Sparse Space–Time Tracklet (SSTT) sampling (more de-
tails are available in), duplicate tracklets can be removed which
means that each person has at most one tracklet in each camera.
There are no positive pairs in the same camera. Based on this
assumption, these methods focus on mining cross camera positive

tracklet pairs from cross camera retrieval ability learning. More
details about SSTT are available in TAUDL (Li, Zhu et al., 2018)
and UTAL (Li et al., 2019). However, the proposed association
strategies of the above methods are not efficient enough which
cost long training hours and large GPU memories but gain the
low performance. The inefficiency reasons of RACE and BUC are
they adapt the progressively tracklets merging strategy in train-
ing which is easily misled by merging noisy pairs and BUC has
to take a very long time on tracklets clustering and merging.
UTAL and TAUDL propose a multi-camera-branch to learn intra-
camera representations and an on-line association strategy to
mining the underlying positive pairs. But the on-line association
is poorly efficient because it needs a large batch size (384) to
sample underlying positive pairs and long training hours for
algorithm converging which means it may occupy at least five
1080-Ti GPUs and cost over 200 epochs for training. UGA adapts
a graph association strategy to alleviate this weakness, but its
two-stage training still needs long hours (about 160 epochs) for
training. To improve the effective, we propose an end-to-end
framework EEA. It can be simply implemented within 80 epochs
with one 1080-Ti GPU. The pip-line of EEA is shown in Fig. 2,
which mainly contains three strategies end-to-end exemplar-
based training, exemplar graph association and (3) dynamic
selection threshold, as described below.

End-to-end exemplar-based training framework. The deep
person RE-ID can be regarded as a deep visual representation
learning task. Similarly, the unsupervised person RE-ID task can
be regarded as an unsupervised visual representation learning
task. Inspired by existing unsupervised discriminative representa-
tion learning methods Exemplar-CNN (Dosovitskiy, Fischer, Sprin-
genberg, Riedmiller, & Brox, 2015) and Momentum (He, Fan,
Wu, Xie, & Girshick, 2019), we adapt an exemplar-based method
in this study. We regard each tracklet as a single exemplar
and design an exemplar memory module to store it. However,
different with Exemplar-CNN and Momentum, RE-ID is an across
camera retrieval task instead of image recognition. Taking this
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Fig. 2. The pip-line of the end-to-end exemplar association framework (EEA), including (1) a representation generator and (2) an exemplar memory module. The
representation generator consists of a Resnet-50 backbone, a global average pooling layer (GAP), an embedding block. This embedding block contains a batch
normalization layer, a drop-out layer, a FC layer reducing the 2048-dim feature to 1024-dim, a batch normalization layer and a L2 normalization layer. The exemplar
module is used as surrogate classifier storing the representation of each tracklet exemplar.

character into account, we investigate unsupervised RE-ID rep-
resentation learning from intra-camera representations learning
and inter-camera representations learning. For the former, we
push different exemplar away to learn distinguishing different
people. While for the latter, the underlying positive exemplar pair
should be pulled close to learn retrieving the same pedestrian
across different cameras. An example of these two representation
learning is shown in Fig. 1 and the framework is shown in
Fig. 2. In this framework, the backbone is used as a represen-
tation generator. The exemplar memory module is used as the
surrogate classifier for intra-camera loss and inter-camera loss.
It allows EEA simultaneously learning the intra-camera repre-
sentation and the inter-camera representation. Furthermore, the
exemplar memory module be directly updated by inter-camera
loss and intra-camera loss in the back propagation. Comparing
with off-line updating (i.e., ECN Zhong, Zheng, Luo et al. (2019)
and BUC Lin et al. (2019)), it improves the training speed.

Exemplar association. Most existing works simply apply KNN
graph for tracklet associations. However KNN graph is highly
computationally complex and includes many noisy associations.
In order to alleviate these weakness, we build a more accurate
graph cross-camera graph on the exemplar memory module.
Three constraints (cross-camera, threshold, symmetry) are used
to reduce the noisy associations in the graph building process. The
cross-camera constrain reduces the computational complexity,
while the others improve the association correct.

Dynamic selection threshold The threshold used in cross-
camera graph is very cumbersome to set manually. Especially
different datasets almost have different suitable thresholds. If the
threshold is setted too large, many truth positive pairs are missed.
On the contrary, many noisy pairs are introduced in the graph. In
this study, we adapt a dynamic selection threshold, which can
be changed in the training process and has a wider range for
selecting training samples.

To sum up, the contributions of this paper can be summarized
as follows:

• We propose an efficient end-to-end unsupervised person
RE-ID framework, named end-to-end exemplar association

(EEA). Without any source domain pre-training, EEA
achieves high performance, with low training costs (lower
GPU occupation and faster training speed).
• In EEA, an exemplar memory module and an exemplar as-

sociation strategy are proposed for view-invariant represen-
tation learning. The former can be fast updated in the back
propagation and the latter is more efficient than KNN graph.
• We conduct extensive experiments and ablation studies on

seven RE-ID datasets to demonstrate the effectiveness of the
proposed EEA.

2. Related work

Deep supervised person RE-ID. The aim of person re-
identification (RE-ID) is retrieving the same person under mul-
tiple views. Benefitting from the advance of the deep learning
(Schmidhuber, 2015; Tavanaei, Ghodrati, Kheradpisheh, Masque-
lier, & Maida, 2018) algorithm, person RE-ID has achieved a
remarkable progress (Chang, Hospedales, & Xiang, 2018; Shen
et al., 2018; Sun et al., 2018; Tan et al., 2019; Wang, Lai, Huang,
& Xie, 2019; Wang, Yang, Cheng, Wang, & Hou, 2019; Yi et al.,
2014; Zheng et al., 2018). Yi et al. (2014) adopt image pairs
and introduce part priors into a siamese network for learning
the view-invariant representations. Chang et al. (2018) and Sun
et al. (2018) develop the part feature based methods to enhance
the discriminative of Re-ID features. Wang et al. (2019) fuse
the temporal–spatial information with appearance information to
improve the retrieval accuracy.

Unsupervised person RE-ID. Deep person RE-ID algorithm has
poor scalability in real-word applications, due to the lack of suf-
ficient pair-wise labeled data for training. To solve this problem,
lots of unsupervised person RE-ID methods are proposed (Fan
et al., 2018; Li, Yang et al., 2018; Wang et al., 2018; Zheng, Zheng,
& Yang, 2017; Zhong, Zheng, Li et al., 2018; Zhong, Zheng, Zheng
et al., 2018; Zhong, Zheng, Zheng, Li and Yang, 2019). Bak et al.
(2018), Deng et al. (2018), Zhong, Zheng, Li et al. (2018) and
Zhong, Zheng, Zheng et al. (2018) adopt the GAN network to
transfer the source domain training images to target domains, or
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transfer the target domain testing images to the source domain
for improving the testing accuracy. Li, Yang et al. (2018) and
Wang, Gong, Zhu, and Wang (2014) apply the domain adapta-
tion methods transferring source domain knowledge to target
domain. Fan et al. (2018) and Wu et al. (Jinlin et al., 2018) fine
tune the source model in target domain with target data pseudo
labels, which are obtained by the unsupervised clustering algo-
rithm. However, these methods rely on the similarity between
the source domain and the target domain. In order to reduce the
dependence on the source domain, the tracklet-based methods
are proposed. Li, Zhu et al. (2018) and Li et al. (2019) match
the underlying positive pairs in the mini batch, using a cross
camera histogram loss to learn the view-invariant features. Ye
et al. (2018) propose a robust embedding to reduce the damage
of the noisy frames for estimator pseudo labels more accuracy.
It largely closes the gap between unsupervised and supervised
representation learning in many computer vision tasks.

Unsupervised representation learning. Unsupervised repre-
sentation learning from visual data is long research hotspot in
computer vision. Many famous models are proposed to solve
this task, i.e., auto-encoder (Bourlard & Kamp, 1988; Hinton &
Salakhutdinov, 2006; Makhzani, Shlens, Jaitly, Goodfellow, & Frey,
2015), GAN (Goodfellow et al., 2014). Auto-encoder learns the
mid-level representation though reconstructing images. GAN pro-
poses the adversarial training to learn the visual data distribution.
Recent years, Exemplar-CNN (Dosovitskiy et al., 2015) and Mo-
mentum are proposed for unsupervised representation learning.
Exemplar-CNN randomly uses image patch as surrogate class and
uses it to train a discriminative CNN model. Momentum (He
et al., 2019) regards each image as an exemplar, proposing a
contrastive loss and shuffling batch normalization trick to train
a powerful pre-trained model for downstream computer vision
task i.e., detection, segmentation.

Graph association methods. Considering the relationships be-
tween the training samples, graph association methods (Chen,
Xu, Li, Sebe and Wang, 2018; Gong et al., 2015; Luo, Zhu, Li,
Ren, & Zhang, 2018; Shen et al., 2018) are used to provide more
supervision signals for both of semi-supervised learning and su-
pervised training. Luo et al. (2018) propose a smoothing neigh-
bors on teacher loss (SNTG) for semi-supervised learning. SNTG
builds the relation graph of training samples and learns more
smoothing representations from the relation graph. SNTG is a
semi-supervised method, which deals the closed set classification
and needs a few of labeled samples for training. However, it
is not suitable for the unsupervised person RE-ID task, since
unsupervised person RE-ID is an open-set retrieval problem. Shen
et al. (2018) propose a similarity-guided graph neural network
(SGGNN) to enhance the relations between the probe images and
the gallery pedestrian images. But SGGNN is a supervised training
approach which needs lots of labeled samples to build the graph
for training.

3. Method

3.1. Overview of EEA

Definition. Suppose we have a unlabeled dataset captured
from T cameras and apply a Sparse Space–time Tracklets sam-
pling (SSTT) algorithm to sample M tracklets for training. De-
noting sit = {I

sit
1 , Is

i
t

2 , . . . , Is
i
t

n }, where Is
i
t

n is the nth image of the
ith tracklet (i ∈ [1, . . . ,Mt ]) in tth camera (t ∈ [1, . . . , T ]).
A pseudo label list [ŷ1, . . . , yit , . . . , ŷT ] is given to the tracklet
sit for computing loss function. In the pseudo label list, yit is
used for intra-camera loss, which is randomly assigned under
camera t before training and cannot be changed in training. While
ŷm(m ̸= t) is applied for inter-camera loss, which is assigned by

the cross-camera graph at the beginning of each training epoch.
φ(·) denotes the representation generator. E i

t (E
i
t ∈ Et ) is the

exemplar stored in the exemplar memory module regarding as
the proxy of sit . Et is a set of E i

t used as a surrogate classifier for
camera t .

Framework. EEA pip-line consists of three modules: a repre-
sentation generator, an exemplar memory module and an camera
evenly sampling module. The representation generator includes a
Resnet-50 backbone, a global average pooling layer (GAP) and an
embedding block. In which, the embedding block contains a batch
normalization layer, a drop-out layer, a FC layer reducing the
2048-dim feature to 1024-dim, a batch normalization layer and a
L2 normalization layer. The exemplar module is used as surrogate
classifier storing the representation of each tracklet exemplar.

3.2. Intra-camera representation learning

The intra-camera representation is learning from sit and the
corresponding pseudo label yit . However, tracklets in different
cameras belonging to the same person almost have different
pseudo labels since yit is random assigned in each camera. To
avoid the conflict, we adopt the multi-task training to learn the
intra-camera representation dependently, where each classifying
task corresponds to a single camera training. All of the classify-
ing tasks share the some representation generator. For the tth
camera, the softmax cross-entropy loss function is formulated as
follows:

ltce(I
sit
n , yit , Et ) = −

Mt∑
j=1

1(yit == j)log(
e(E

j
t )
T φ(I

sit
n )∑Mt

k=1 e
(Ekt )

T φ(I
sit
n )

),

where E j
t ∈ Et (1)

In Eq. (1), applying L2 normalization on E j
t and φ(Is

i
t

n ), the product
of these two representations can be formulated as follows:

(E j
t )

T
φ(Is

i
t

n ) = ∥E j
t∥∥φ(I

sit
n )∥cos(θ ) = cos(θ )

×(∥E j
t∥ = 1, ∥φ(Is

i
t

n )∥ = 1) (2)

where θ is the angle between E j
t and φ(Is

i
t

n ). Suppose that there
are two images, I1(I1 ∈ sjt ) and I2(I2 /∈ sjt ), we can infer a result as
follows:

cos(I1, E
j
t ) > cos(I2, E

j
t ) (3)

The above equation is equal to that:

∥I1 − E j
t∥ < ∥I2 − E j

t∥ (4)

Eq. (4) indicates that the exemplars are centers of corresponding
tracklets and can be learned by intra-camera loss. Due to this, we
can directly learn the tracklet center from intra-camera represen-
tation learning and directly update it through back propagation.
It is much faster than off-line updating which needs much time
to re-generating representation and computing centers for the
whole training set. The intra-camera loss lintra of a mini batch can
be defined as Eq. (5), where Nbs denotes the batch size.

lintra =
1
Nbs

∑
Nbs

ltce(I
sit
n , yit ) (5)

3.3. Inter-camera representation learning

Cross-camera graph building We define a local KNN set
{E i

t}
m
K (m ̸= t) of E i

t on the exemplar memory module, which finds
of the nearest K tracklets of E i

t in camera m. There are no positive
pairs in the same camera since SSTT sampling. In order to reduce
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Algorithm 1: End-to-End exemplar association (EEA)

Input: Unlabeled tracklets sit of T cameras.
The representation generator φ(·).
An randomly initialized exemplar memory module E.
Et (Et ∈ E) is the exemplar set of camera t .
Threshold λ and max iteration epmax.
The lower bound L(λ) and changing rate η.
Exemplar initializing epoch epwarm for exemplars initiating.
Randomly assigning pseudo labels yit for each tracklet.
Initializing ep← 0, λ← L(λ).

while ep < epmax do
1: Evenly sampling tracklets from T cameras;
2: Assigning cross-camera pseudo list [ŷ1, · · · , yim, · · · , ŷT ] with
exemplar memory module;
3: if ep > epwarm then

λ← λ+ η ;
end
4: t ← 0 ;
5: for t in [0, · · · , T ] do

Computing intra-camera loss lintra for camera t by Eq. (5);
Computing inter-camera loss linter for other T − 1 cameras by
Eq. (9);
Computing total loss Ltotal according Eq. (10);

end
6: Updating φ and E;
7: ep← ep+ 1;

end
Output: Representation generator φ

.

computation complexity, the local KNN set only finds the nearest
K tracklets between different cameras. Through merging these
local KNN sets, we can build a cross-camera graph with M nodes.
An adjacency matrix A ∈ RM×M is used to denote the graph. The
edge in the graph can be defined as:

A(E i
t , E

j
m) =

⎧⎨⎩
cos(E i

t , E
j
m), if cos(E i

t , E
j
m) > λ & Sym(E i

t , E
j
m) = True & t ̸= m

1, m = t & i = j
0, else

(6)

In above equation, cos(E i
t , E

j
m) > λ is the threshold constrain,

which requires the cosine similarity between the nodes E i
t and

E j
m is larger than the threshold λ. (E i

t , E
j
m)K is the symmetric

constraint, which requires E i
t and E j

m must exist in each other’s
local KNN set. It can be defined as follows:

Sym(E i
t , E

j
m) =

{
True, E j

m ∈ {E i
t}

m
K & E i

t ∈ {E
j
m}

t
K & t ̸= m

False, else
(7)

Considering through the SSTT sampling, each person has at most
one tracklet in each camera. K is set to 1 in Eq. (6) and Eq. (7).

Comparing the conventional KNN graph, suppose that each
camera has N tracklets and T cameras in total. KNN graph needs
to compute a TN × TN matrix and sort TN × TN matrix to find
top-K nearest neighbors. While our cross-camera graph computes
and sorts N × N matrices for

(2
T

)
times. The N × N matrix is

easier and faster to compute and sort than the TN × TN matrix.
An intuitive explanation is that the cross-camera graph does not
count tracklets pairs belonging to the same camera.

Inter-camera loss. Firstly, we define a graph neighbor set
N(sit ) of the tracklet sit :

N(sit ) = {(s
a
m, yam)| A(E

i
t , E

a
m) ̸= 0,m ∈ [1, . . . , T ],m ̸= t} (8)

We think these tracklets sam(s
a
m ∈ N(sit )) belonging to the same

graph neighbor set are the underlying positive pairs. In fact,
N(sit ) is a set which contains sit ’s all local nearest neighbors of

other T − 1 cameras. In other T − 1 cameras, sit may have same
pseudo labels with its corresponding graph neighbor. Therefore,
for the graph neighbors [sa1, . . . , s

b
m, . . . , scT ](s

b
m ∈ N(sit )) of sit ,

we given the corresponding pseudo labels [ya1, . . . , y
b
m, . . . , ycT ]

for training sit in other T − 1 cameras to learn inter-camera
representations. In order to distinguish with the pseudo yit , we
simply denote [ya1, . . . , y

b
m, . . . , ycT ] as [ŷ1, . . . , ŷm, . . . , ŷT ]. To this

end, we propose the following inter-camera loss to pulling these
underlying positive pairs close:

lmce(I
sit
n , ŷm, Em) = −

Mm∑
j=1

1(ŷm == j)log(
e(c

j
m)T φ(I

sit
n )∑Mm

k=1 e(c
k
m)T φ(I

sit
n )

)

linter (I
sit
n ) =

∑
N(sit )

A(E i
t , E

a
m)l

m
ce(I

sit
n , ŷm, Em)

=

T∑
m=1,m̸=t

A(E i
t , E

a
m)l

m
ce(I

sit
n , ŷm, Em),

where ŷm = yam

(9)

In Eq. (9), edge weight A(E i
t , E

a
m) is used as a confidence coeffi-

cient to avoid misled by noisy associations. The total loss can be
summarized as follows:

Ltotal = ltce(I
sit
n , yit , Et )+

T∑
m=1,m̸=t

A(E i
t , E

a
m)l

m
ce(I

sit
n , ŷm, Em)

Ltotal =
T∑

m=1

A(E i
t , E

a
m)l

m
ce(I

sit
n , ŷm, Em) where A(E i

t , E
a
m) = 1

(10)

In above equation, both of the intra-camera loss and the inter-
camera loss can be computed on the exemplar memory. It al-
lows us to adapt an end-to-end frame work to simultaneously
learn intra-camera representation and inter-camera representa-
tion rather than adapt a multi-stage strategy to learn them.

3.4. Dynamic selection threshold

In last section, we introduce a cross-camera graph for inter-
camera representation learning. It needs a threshold λ for training
pairs selecting. We initiate the exemplar memory module with
several epochs intra-camera training for investigating the influ-
ence of λ. As shown in Fig. 3, the small threshold has large recall
and low precision which means it finds more correct pairs but
introduces more noisy associations. The large threshold is the
opposite. Due to this, we propose a dynamic changing strategy
increasing λ from a lower bound L(λ) to a upper bound U(λ).
In this study, we adapt a simple yet effective method, linearly
increasing, which can be formulated as:

λ =: λ+ η

η =
U(λ)− L(λ)

epmax − epwarm

(11)

In Eq. (11), epmax denotes the total training epoch and epwarm
denotes the first several epochs for exemplar initializing.

4. Experiment

4.1. Experimental setup

Datasets and evaluation protocol. All experiments are evalu-
ated on four image RE-ID datasets (Market-1501 (Zheng et al.,
2015), DukeMTMC-ReID (Ristani et al., 2016a; Zheng et al.,
2017), CUHK03-detected (Li et al., 2014b), MTMS17 (Wei et al.,
2018)) and three video RE-ID datasets (Mars (Zheng et al.,
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Fig. 3. Threshold analysis on Market-1501 and MARS. In this figure, ‘‘pre’’ denotes the precision. ‘‘rec’’ denotes the recall. ‘‘sys_pre’’ and ‘‘sys_rec’’ respectively denote
the precision and recall of using the symmetry condition. The horizontal axis is the value of the λ. The vertical axis denotes the value of the precision score and
recall score.

Table 1
Dataset statistics and training/testing splitting.
Dataset ID Cameras Tracklets Train Test Images

iLIDS-VID (Wang et al., 2014) 300 2 600 150 150 43,800
PRID2011 (Hirzer, Beleznai, Roth, & Bischof, 2011) 178 2 354 89 89 38,466
MARS (Zheng et al., 2016) 1261 6 20,478 625 636 1,191,003

Market-1501 (Zheng et al., 2015) 1501 6 – 751 750 32,668
DukeMTMC-ReID (Ristani et al., 2016a; Zheng et al., 2017) 1812 8 – 702 1110 36,411
MSMT17 (Wei et al., 2018) 4101 15 – 1041 3060 126,441
CUHK03-detected (Li, Zhao, Xiao, & Wang, 2014b) 1467 2 – 1367 100 14,096

Table 2
The ablation studies of the structure & sampling.
Strategies Market-1501 Mars

Metric (%) mAP Rank-1 mAP Rank-1

Res50 12.0 28.9 20.9 34.9
Res50+ KT 27.9 47.3 26.0 41.1
Res50+ KT + emb 54.8 77.5 46.3 55.7

Res50 denotes only use the Resnet-50 backbone;
KT denotes camera evenly sampling;
emb denotes adding an embedding block at the top of the backbone.

2016), Prid2011 (Hirzer et al., 2011), iLIDS-Video (Wang et al.,
2014)). The ablation studies are mainly conducted on Market-
1501 (Zheng et al., 2015) and Mars (Zheng et al., 2016) which
are most the widely used image and video person RE-ID datasets.
The training/testing ID splits are shown in Table 1. Common
cumulative matching characteristic (CMC) and mean average
precision (mAP) are used as the performance evaluation metric.
Particularly, on Market-1501, we follow the single-query evalua-
tion protocol. On the CUHK03-detected, we follow the standard
single-shot protocol for the labeled images and detected images
separately, which needs to repeat 20 times of random 1367/100
training/testing identity splitting and report the averaged results.

Pseudo label assignment. We follow the experiments settings
and tracklet sampling methods of TAUDL (Li, Zhu et al., 2018) and
UTAL (Li et al., 2019). For video datasets, iLIDS-VID and PRID2011
provide only one tracklet of a person in one camera. But MARS
has multiple tracklets per ID per camera. We randomly sample
one tracklet for a person in one camera on MARS. For the image
RE-ID datasets, we assume all images of a person in one camera

belong to a single tracklet. Then, we randomly assign a unique
pseudo label to each tracklet for each camera.

4.2. Implement details

The structure of the backbone is shown in Fig. 2. To avoid over-
fitting and restrain negative pairs at the intra-camera learning
stage, we add an embedding block at the top of the backbone,
which contains two batch normalization layers and one drop-out
layer. The training images are resized to 256 × 128. A camera
evenly sampling strategy is used in training data loading, which
randomly sample the same number images from each camera in
a mini batch. The batch size of our experiments is set to 60. Adam
optimizer is applied in our training process, with initializing the
learning rate of 3.5e−4. The total training epoch is set to 80.
The exemplar initiating epoch is set as 30 for MARS since it has
most tracklets and is set as 10 for the other datasets. During
the initializing epoch, we only compute intra-camera loss for
initializing exemplars.

4.3. Ablation study

Structure & sampling strategy. We quickly verify the valid-
ity of the representation generator and camera evenly sampling
strategy on MARS and Market-1501. Ablation studies are shown
in Table 2. and Fig. 4. After adding a BN layer for both the
supervised algorithm and unsupervised algorithm, the similarity
score of negative samples becomes smaller than that of posi-
tive samples. Due to this, the positive and negative samples are
much easier to be discriminated. As in previous work (Ioffe &
Szegedy, 2015; Shen et al., 2018; Wu et al., 2019), BN of the
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Table 3
Ablation of λ on image person RE-ID datasets.
Threshold Market-1501 DukeMTMC-ReID CUHK03 MSMT17

Metric (%) mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1

λ = 0.55 67.5 85.5 54.2 74.8 70.5 59.6 20.2 46.0
λ = 0.60 68.9 86.3 55.2 74.3 69.4 57.2 21.7 50.2
λ = 0.65 70.3 87.2 53.3 75.0 68.2 56.5 21.5 49.5
λ = 0.70 71.0 87.9 55.7 75.7 63.4 51.0 20.9 47.3
λ = 0.75 69.3 86.3 55.1 75.0 61.6 48.4 21.3 49.2
Average performance 69.4 86.6 54.3 75.0 66.6 54.5 21.2 48.4

Dynamic λ 66.6 85.4 55.4 75.6 73.1 62.5 20.1 45.5

1st and 2nd best results are in red/blue respectively.

Fig. 4. Similarity score distributions of positive pairs and negative pairs on Market-1501. (a) is the distribution of positive pairs; (b) is the distribution of negative
pairs. After using the embedding block, positive pairs and negative pairs are easier to be distinguished.

embedding block may help the deep network converge faster
and we find that the faster convergence helps better distinguish
negative pairs. Considering that people’s track always does not
cover all of the cameras, different cameras have different number
of tracklet. For example, in MARS, six cameras have 520, 447, 314,
195, 375 and 104 people respectively. We apply a camera evenly
sampling strategy in data loading to balance the model learning
speed over different cameras. The ablation study in Table 2, where
KT denotes evenly K images from T cameras. Comparing with
random sampling, camera evenly sampling averagely improves
12.3% Rank-1 and 10.5% mAP on these two datasets.

Threshold λ analysis. As shown in Table 3 and Table 4,
we evaluate the performance of fixed λ from {0.55, 0.6, 0.65, 0.7, 0.75}
and dynamic selection threshold strategy. Results of the fixed λ

indicate that the performance of different λ is quit different and
different datasets have different suitable threshold. For example,
on Prid2011, λ = 0.65 outperforms λ = 0.75 by 10.1% Rank-
1. CUHK03 and iLIDS-VID perform better with small thresholds,
while Market prefers large thresholds. To this end, we adapt
dynamic threshold which dynamically changes on a wider range
to select training pairs. As shown in Table 3, the dynamic λ has
preponderant performance over the fixed λ on video person RE-
ID. Although, the dynamic λ does not perform on all datasets,
it averagely outperforms the fixed λ by 6.0% Rank-1 and 7.6%
Rank-5. This makes us pay more attention on the unsupervised
algorithm instead of hyper-parameter tuning.

Training time analysis. As shown in Table 7, we compare
MARS training time on the 1080-Ti GPU to demonstrate the
efficiency of EEA. UGA needs 12.6 GPU hours since wasting much

Table 4
Ablation of λ on video person RE-ID datasets.
Metric (%) MARS Prid2011 iLIDS-VID

mAP Rank-1 Rank-1 Rank-5 Rank-1 Rank-5

λ = 0.55 38.7 58.1 71.9 92.1 54.0 74.0
λ = 0.60 40.5 59.9 79.8 93.3 51.3 72.7
λ = 0.65 39.3 58.1 80.9 94.4 57.3 72.0
λ = 0.70 37.8 57.7 77.5 92.1 47.3 70.0
λ = 0.75 35.5 54.5 70.8 91.0 48.0 69.3
Average performance 38.4 57.7 76.2 92.6 51.6 71.6

Dynamic λ 44.8 61.5 82.0 96.6 60.0 82.7

1st and 2nd best results are in red/blue respectively.

time for two-stage training. For BUC, we run the code2 released
on the github. BUC takes much time for clustering, since it has
to re-extract for all training data. It stores the feature of each
cluster to compute repelled loss and the dimension of features is
2048. Hence, it takes 30.4 GPU hours (15.2 h and 2 1080-Ti GPUs)
for training. TAUDL and UTAL do not release code. But comparing
with EEA (60 batch size, Resnet-50 backbone, 80 epochs, 6.3 GPU
hours), they set that the batch size is 384, the backbone is Resnet-
50 and training epoch is 200. We estimate that they need 2.5 h
and 5 1080-Ti GPUs for training at least, totally 12.5 GPU hours.
Comparing with these methods, our end-to-end training methods
EEA is much more efficient, only needing 6.3 GPU hours for train-
ing which is the half of UGA, TAUDL and UTAL. Comparing with

2 https://github.com/vana77/Bottom-up-Clustering-Person-Re-identification.

https://github.com/vana77/Bottom-up-Clustering-Person-Re-identification
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Table 5
Ablation of intra-camera & inter-camera loss on image person RE-ID datasets.
Metric (%) Market-1501 DukeMTMC-ReID CUHK03 MSMT17

mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1

Intra-camera loss 54.8 77.5 52.5 72.6 56.3 42.2 19.7 45.7
Inter-camera loss 36.7 74.5 45.1 66.2 39.3 24.8 14.6 37.2
Total loss 66.6 85.4 55.4 75.6 73.1 62.5 20.1 45.5

Improvement 11.8 7.9 2.9 3.0 16.3 20.3 0.4 -0.2

Table 6
Ablation of intra-camera & inter-camera loss on video person RE-ID datasets.
Metric (%) MARS Prid2011 iLIDS-VID

mAP Rank-1 Rank-1 Rank-5 Rank-1 Rank-5

Intra-camera loss 35.1 55.1 65.2 86.5 42.7 74.0
Inter-camera loss 35.6 52.7 70.8 91.0 50.7 78.7
Total loss 44.8 61.5 82.0 96.6 60.0 82.7

Improvement 9.7 6.4 16.8 10.1 17.3 8.7

Table 7
GPU hours of existing tracklet association methods on MARS.
Methods Epochs GPU occupying GPU hours

TAUDL (Li, Zhu et al., 2018) 200 About 5 About 12.5
UTAL (Li et al., 2019) 200 About 5 About 12.5
BUC (Lin et al., 2019) 380 2 30.4
UGA (Wu et al., 2019) 160 1 12.6

EEA (This work) 80 1 6.3

existing methods in Tables 9 and 10, EEA outperforms most of
them. The end-to-end framework EEA achieves a better trade-off
between performance and training speed.

Loss functions analysis. In Table 5 and Table 6, we sepa-
rately apply the intra-camera loss, the inter-camera loss and the
total loss for training. The intra-camera loss achieves performs
well by learning from single camera negative pairs. The inter-
camera loss performs worse than the intra-camera loss. However,
adding an inter-camera for view-invariant representations learn-
ing, Rank-1 averagely boosts 10.2% on these seven datasets. This
demonstrates the importance of the intra-camera representation
learning. Without it, inter-camera learning can be easily misled
by noisy associations.

Noise analysis. The assumption of our experiments is one per-
son has only one tracklet in each camera through SSTT sampling.
However, it may not always hold in real-word applications. The ID
duplication and mislabeling often occur in practice. The ID dupli-
cation is that the tracklets of the same person are given different
pseudo labels. While the mislabeling is assigned the tracklets
of different persons with the same pseudo labels. As shown in
Table 8, we randomly select a part (10%, 20%, 50%) of persons per
camera to simulate the ID duplication and mislabeling. We also
count the standard deviation of these performances. According
to Table 8, for ID duplication, Standard deviations of Rank-1 and
mAP are 5.4 and 4.8, while they are 1.9 and 2.4 for mislabeling.
ID duplication causes more damage. It should be avoided in real
word applications.

Visual results. Several MARS examples of EEA retrieval re-
sults are shown in Fig. 5. Part of false matches come from the
same camera, since the similar appearance (i.e., the 2nd retrieval
tracklet of the 3th raw and the 2nd retrieval tracklet of the 4th
raw). The other false matches belong to the same camera (i.e.,
the 1st, 2nd retrieval tracklets of the 2nd raw and the 1st, 3rd
retrieval tracklets of the 5th raw). One possible reason is that
the false pedestrian detection introduces a lot of background
in pedestrian bounding box (Chi et al., 2019a, 2019b; Zhang
et al., 2018). In these false matches, background is the same and

accounts for a large proportion. The unsupervised trained model
regards these false matches as the same pedestrian. This issue
demonstrates that the cross camera constrain is necessary for
KNN graph building (Eq. (6)). Without this constrain, KNN graph
would link false matches belonging to the same camera. It is
invalid for inter-camera representation learning and harmful for
intra-camera representation learning.

4.4. Comparison to the state-of-the-art methods

We compare our EEA with some state-of-the-art unsupervised
person RE-ID methods, specifically comparing with four similar
tracklet association methods. The performances of these methods
are shown in Tables 9 and 10. We also report the average per-
formance (mAP, Rank-1, Rank-5 and Rank-20) and corresponding
standard deviations of 3 runs in Table 11.

Image person RE-ID datasets. Table 9 shows the performance
of several state-of-the-art methods on four image person RE-ID
datasets, containing four GAN based methods (HHL, SPGAN, SP-
GAN+LMP), two domain adaptation methods (TJ-AIDL, ECN), four
unsupervised clustering methods (BUC, CAMEL, PUL and CDS) and
two tracklet based method (UTAL, TAUDL). Comparing with them,
UGA and EEA have the Overwhelming performance. UGA aver-
agely outperforms the second by 9.6% on Rank-1 accuracy and
16.8% on mAP, respectively. EEA boosts 0.6% Rank-1 and 6% Rank-
1 on DukeMTMC-ReID and CUHK03 respectively, achieving the
best performance on DukeMTMC-ReID and CUHK03. Specifically,
EEA cuts the training (UGA, UTAL and TAUDL) time in half.

Video person RE-ID datasets. We compare the proposed EEA
on three video person RE-ID datasets with several state-of-the-art
approaches in Table 10. EEA nearly achieves the best performance
on both of three video person RE-ID datasets. It outperforms the
second 1.1% Rank-1 and 2.7% Rank-1 on PRID2011 and iLIDS-
VID respectively. Although EUG outperforms it 1.2% Rank-1 on
MARS, EUG is a one-shot learning algorithm and EEA is a totally
unsupervised algorithm. Furthermore, EUG is sensitive to the
enlarging factors and UGA is a little sensitive to the threshold λ.
On MARS, EUG declines from 62.67% to 42.77% with the enlarging
factors changing, and UGA declines from 59.9% to 54.5% with the
λ changing. EEA adapts a dynamic threshold strategy to alleviate
this problem. Comparatively, EEA is more robust to the hyper-
parameter. Comparing with Snippet and IANet, EEA largely closes
the gap between supervised learning and unsupervised learning
on the person RE-ID task.

Comparison with the unsupervised graph based methods.
We compare our EEA with the existed graph based work (i.e.,
TUADL (Li, Zhu et al., 2018), UTAL (Li et al., 2019), RACE (Ye
et al., 2018) and ECN (Zhong, Zheng, Luo et al., 2019)) in Tables 9
and 10. EEA averagely outperforms TAUDL by (17.6% on Rank-
1) in image person RE-ID datasets and (27.9% on Rank-1) in
video person RE-ID datasets. EEA outperforms UTAL by (12.3% on
Rank-1,) in image person RE-ID datasets and (12.5% on Rank-1)
in video person RE-ID datasets. In addition, both of TAUDL and
UTAL match the positive pairs in the mini batch which needs
a large batch size (384) to sample the underlying positive pairs
and may occupy at least five 1080Ti GPUs in training. But EEA
can be implemented on one 1080-Ti, since the exemplar memory
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Table 8
Analysis of noisy tracklets on MARS.
Noise ID duplication Mislabeling

Metric (%) mAP Rank-1 Rank-5 Rank-10 mAP Rank-1 Rank-5 Rank-10

10% 35.5 53.1 68.2 73.5 43.3 60.2 74.2 78.4
20% 34.0 52.7 65.9 72.4 41.6 59.9 72.9 78.2
50% 24.5 41.4 57.5 63.4 37.5 56.0 70.4 74.7

average 31.3 49.1 63.9 69.8 40.8 58.7 72.5 77.1
std 4.8 5.4 4.5 4.5 2.4 1.9 1.6 1.7

Fig. 5. Example tracklets retrieved by EEA model among unlabeled short fragmented tracklets. Each row denotes a case. The first tracklet is given as a query, while the
remaining three are retrieval results. The green and red bounding box denote the true/false retrieval results, respectively. C1, C2, . . . , C6 denote the 1st, 2nd, . . . , 6th
camera, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

module allows using a small mini batch in training. Different from
RACE (Ye et al., 2018) merging the underlying positive track-
lets directly, EEA uses the cross-camera loss and cross-camera

graph to associate tracklets. It is more robust to noisy associa-
tions. Due to this, EEA easily achieves the higher performance
than RACE. Comparing with ECN, EEA averagely outperforms
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Table 9
Comparing UGA with the state-of-the-art methods on the image person RE-ID dataset.
Datasets Reference Market-1501 DukeMTMC-ReID CUHK03 MSMT17

Metric (%) mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1

DECAMEL (Yu, Wu, & Zheng, 2018) TPAMI’19 32.4 60.2 – – – 38.27 11.1 30.3
LOMO (Liao, Hu, Zhu, & Li, 2015) CVPR’15 8.0 27.2 4.8 12.3 – 46.25 – –
BoW (Zheng et al., 2015) ICCV’15 14.8 35.8 8.3 17.1 – – – –
DIC (Kodirov, Xiang, & Gong, 2015) BMVC’15 22.7 50.2 – – – 36.5 – –
UDML (Peng, Xiang, Wang, Pontil, Gong, Huang, & Tian, 2016) CVPR’16 12.4 34.5 7.3 12.3 – – – –

HHL (Zhong, Zheng, Li et al., 2018) ECCV’18 31.4 62.2 27.2 46.9 – – – –
SPGAN (Deng et al., 2018) CVPR’18 22.8 51.5 22.3 41.1
SPGAN+LMP (Deng et al., 2018) CVPR’18 26.7 57.7 26.2 46.4 – – – –
TJ-AIDL (Wang et al., 2018) CVPR’17 26.5 58.2 23.0 44.3 – – – –
PTGAN (Wei et al., 2018) CVPR’18 15.7 38.6 13.5 27.4 – 37.5 – –

CAMEL (Yu, Wu, & Zheng, 2017) ICCV’17 26.3 54.5 – – – 39.4 – –
PUL (Fan et al., 2018) ToMM’18 20.1 44.7 16.4 30.4 – – – –
BUC (Lin et al., 2019) AAA’19 38.3 66.2 27.5 47.4 – – – –
MAR (Yu et al., 2019) CVPR’19 40.0 67.7 48.0 67.1 – – – –
CDS (Jinlin et al., 2018) ICME’19 39.9 71.6 42.7 67.2 – – – –
ECN (Zhong, Zheng, Luo et al., 2019) CVPR’19 43.0 75.1 40.4 63.3 – – 10.2 30.2

TAUDL (Li, Zhu et al., 2018) ECCV’18 41.2 63.7 43.5 61.7 31.2 44.7 12.5 28.4
UTAL (Li et al., 2019) TPAMI’19 46.2 69.2 44.6 62.3 42.3 56.3 13.1 31.4
UGA (Wu et al., 2019) ICCV’19 70.3 87.2 53.3 75.0 68.2 56.5 21.7 49.5
EEA This work 66.6 85.4 55.4 75.6 73.1 62.5 20.1 45.5

PCB (Sun et al., 2018)a EECV’18 77.4 92.3 69.3 83.3 – – – –
GCS (Chen, Xu et al., 2018)a CVPR’18 81.6 93.5 69.5 84.9 97.2 88.8 – –
SFT (Luo, Chen, Wang, & Zhang, 2019)a ICCV’19 82.7 93.4 73.2 86.9 – – 47.6 73.6

1st, 2nd, 3rd best results are in red/blue/green respectively.
aDenotes the supervised algorithm.

Table 10
Comparing UGA with the state-of-the-art methods on the video person RE-ID dataset.
Datasets PRID2011 iLIDS-VID MARS

Metric (%) R1 R5 R20 R1 R5 R20 R1 R5 mAP

SMP (Liu, Wang, & Lu, 2017) 80.9 95.6 99.4 41.7 66.3 80.7 23.9 35.8 10.5
DGM+MLAPG (Ye, Ma, Zheng, Li, & Yuen, 2017) 73.5 92.6 99.0 37.1 61.3 82.0 24.6 42.6 11.8
DGM+IDE (Ye et al., 2017) 56.4 81.3 96.4 36.2 62.8 82.7 36.8 54.0 21.3
DASy (Bak et al., 2018) 43.0 – – 56.5 – – – – –
GRDL (Kodirov, Xiang, Fu, & Gong, 2016) 41.6 76.4 89.9 25.7 49.9 77.6 19.3 33.2 9.56
DTW (Ma et al., 2016) 41.7 67.1 90.1 31.5 62.1 82.4 – – –
BUC (Lin et al., 2019) – – – – – – 61.1 75.1 38.0
EUG (Wu et al., 2018)b – – – – – – 62.7 74.9 42.5
RACE (Ye et al., 2018) 50.6 79.4 91.8 19.3 39.3 68.7 43.2 57.1 24.5
TAUDL (Li, Zhu et al., 2018) 49.4 78.7 98.9 26.7 51.3 82.0 43.8 59.9 29.1
UTAL (Li et al., 2019) 54.7 83.1 96.2 35.1 59.0 83.8 49.9 66.4 35.2
UGA (Wu et al., 2019) 80.9 94.4 100 57.3 72.0 87.3 58.1 73.4 39.3

EEA (This work) 82.0 96.6 100 60.0 82.7 94.0 61.5 76.5 44.8

Snippet (Chen, Li, Xiao, Yi and Wang, 2018)a 93.0 99.3 100.0 85.4 96.7 99.5 86.3 94.7 76.1
IANet (Hou et al., 2019a)a – – – 54.6 79.4 86.9 84.0 93.7 73.3

1st and 2nd best results are in red/blue respectively.
R1, R5 and R20 denote Rank-1, Rank-5 and Rank-20 respectively.
aDenotes the supervised algorithm.
bEUG reports results with the hyper-parameter p = 0.5.

Table 11
Average results of three runs.
Metric (%) mAP Rank-1 Rank-5 Rank-20

Market1501 68.7 ± 0.309 86.2 ± 0.779 94.2 ± 0.161 97.87 ± 0.125
DukeMTMC 54.2 ± 0.838 73.6 ± 0.533 84.1 ± 0.850 90.6 ± 0.535
CUHK03 72.5 ± 0.816 61.3 ± 0.816 86.4 ± 0.873 95.8 ± 0.356
MSMT17 20.5 ± 0.694 46.4 ± 1.275 60.7 ± 1.241 73.1 ± 1.080

MARS – 44.6 ± 0.939 75.8 ± 0.408 84.1 ± 0.262
Prid2011 – 81.6 ± 0.519 81.6 ± 0.519 99.9 ± 0.125
iLIDS-VID – 60.9 ± 1.657 82.9 ± 0.829 95.3 ± 0.531
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ECN by (9.5% on Rank-1, 12.1% on mAP) in image person RE-
ID datasets. Because ECN simply apply a KNN graph to associate
the underlying positive samples, while EEA uses the more precise
graph (cross-camera graph) to associate the underlying positive
pairs.

5. Conclusion

In this paper, we have proposed a novel yet effective End-
to-End Exemplar Association (EEA) approach to address the un-
supervised person RE-ID problem. In this work, we investigate
unsupervised person RE-ID representation from inter-camera
representation learning and intra-camera representation learn-
ing. We develop an exemplar memory module to simultaneously
learn both of them. Based on this, we propose three strate-
gies: (1) end-to-end exemplar-based training, (2) exemplar
association and (3) dynamic selection threshold. The first one
is to accelerate the training process, while the others aim to
improve the tracklet association correctness. Due to this, EEA
achieves competitive performances and cuts the training time of
existing tracklet association methods (UTAL, TAUDL, UGA) in a
half. Experiments on four image RE-ID datasets and three video
RE-ID datasets demonstrate the superiority of EEA.
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